The Lattice Monte Carlo Method for Solving Phenomenological Mass and Thermal Diffusion Problems
نویسندگان
چکیده
منابع مشابه
The Lattice Monte Carlo Method for Solving Phenomenological Mass and Heat Transport Problems
In this review paper, we introduce the recently developed Lattice Monte Carlo method for addressing and solving phenomenologically-based mass and heat transport problems especially for composite and porous materials. We describe in detail the application of this method to calculate effective mass diffusivities and to determine concentration profiles. Next, we describe in detail the application ...
متن کاملLattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow
Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simul...
متن کاملIntroduction to the Diffusion Monte Carlo Method
A self–contained and tutorial presentation of the diffusion Monte Carlo method for determining the ground state energy and wave function of quantum systems is provided. First, the theoretical basis of the method is derived and then a numerical algorithm is formulated. The algorithm is applied to determine the ground state of the harmonic oscillator, the Morse oscillator, the hydrogen atom, and ...
متن کاملFourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
By decomposing the important sampled imaginary time Schrödinger evolution operator to fourth order with positive coefficients, we derived a number of distinct fourth-order diffusion Monte Carlo algorithms. These sophisticated algorithms require higher derivatives of the drift velocity and local energy and are more complicated to program. However, they allowed very large time steps to be used, c...
متن کاملMultilevel Quasi-Monte Carlo methods for lognormal diffusion problems
In this paper we present a rigorous cost and error analysis of a multilevel estimator based on randomly shifted Quasi-Monte Carlo (QMC) lattice rules for lognormal diffusion problems. These problems are motivated by uncertainty quantification problems in subsurface flow. We extend the convergence analysis in [Graham et al., Numer. Math. 2014] to multilevel Quasi-Monte Carlo finite element discr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Defect and Diffusion Forum
سال: 2008
ISSN: 1662-9507
DOI: 10.4028/www.scientific.net/ddf.279.13